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Abstract

A multiobjective optimization problem is presented to determine the optimal layer thickness and optimal closed loop
control function for a symmetric cross-ply laminate subjected to thermomechanical loadings. The optimization pro-
cedure aims to maximize the critical combination of the applied edges load and temperature levels and to minimize the
laminate dynamic response subject to constraints on the thickness and control energy. The objective of the optimization
problem is formulated based on a consistent first-order shear deformation theory without introducing a shear cor-
rection factor. The dynamic response is measured as the sum of the total elastic energy of the laminate and a penalty
term involving a closed loop control force. Laipunov-Bellman theory is used to obtain solutions for the controlled
deflections and optimal control force. The layer thickness is taken as a design variable, and is presented as a function of
the number of layers. A numerical study is made for simply supported symmetric laminates with an odd number of
layers to show the advantages of the present control optimization. The study indicates that the present control opti-
mization is active with most laminates cases for all values of aspect ratio, number of layers, orthotropy ratio, thermal
expansions ratio and thickness ratio.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Temperature changes frequently represent a significant factor of failure of composite structures sub-
jected to sever environmental loads. The thermal stresses accompanying the non-uniform unsteady heating
cause thermal fatigue and considerable plastic strains leading to complete or progressive destruction of the
composite structures. Furthermore, the repeated action of the thermal stresses in some composite laminated
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plates and shells leads to debonding of layers, longitudinal cracks, as well as, a thermal buckling in
composite thin walled members. However, composite materials offer advantages over conventional mate-
rials, and they are more thermally stable than metals. To take advantage of the full potential of composite
materials, structural analysts and designers must have extremely accurate tools of the analysis and design
methods at their disposal. Optimization control is considered as the most effective mean for improving the
performance of these composite structures to serve some functions under certain conditions.

A series of publications has appeared and concerning the design optimization and vibration control of
large space structures. Many studies treated the design optimization and structural control as separate
issues (see e.g. O’Donoghue and Atluri, 1986; Turvey and Marshall, 1995; Rao, 1989; Yang and Soong,
1988; Adali, 1984). In other studies, integrated approaches for the simultaneous design and control opti-
mization were presented using a unified formulation (see e.g. Adali and Nissen, 1987; Rao, 1988; Salama
et al., 1988; Cha et al., 1988). Rao et al. (1988) presented a multiobjective optimization approach with
constrained imposed on the relevant quantities for truss and beams structures. Mesquita and Kamat (1988)
used sequential structural and control optimization procedure for a stiffened composite laminate to im-
prove a control performance index taking the fiber orientations and stiffener areas as design variables. More
recent studies on this subject are available in the literature (Adali and Duffy, 1990a,b; Adali et al., 1991,
1997; Sloss et al., 1992; Sadek et al., 1993; Lee et al., 1999; Muc and Krawiec, 2000; Fares et al., 2002a,b;
Wang and Huang, 2002; Youssif et al., 2001).

One inherent feature of composite laminates is that the transverse shear modulus is lower than the in-
plane moduli and, as a result, the influence of transverse shear deformations becomes significant as the
plate thickness increases. So, the application of the classical plate theory (CPT) which neglects the
transverse shear effects, to composite laminates could leads to as much as 40% or more errors in the opti-
mum values of the design and control variables (see Fares et al., 2002a,b). However, there are few studies,
which treated the optimization control problems for composite laminates based on shear deformation
theories.

The current work deals with the design and control optimization of composite laminates subjected to
varying temperature distributions and in-plane compressive loadings. The design and control objectives of
the problem are to maximize the thermal buckling, and to minimize the dynamic response with minimum
expenditure of control force. The design and control objectives are formulated based on a consistent first-
order shear deformation theory. This theory accounts for Reissner—Mindlin’s displacement assumptions
and stresses consistent with the surface conditions on the top and lower laminate surfaces (see Fares and
Zenkour, 1999). So, the rationale for the shear correction factors used in other first-order theories is ob-
viated. The dynamic response is expressed as the sum of the total elastic energy of the laminate and a
penalty term involving the control force. Comparative examples are given for cross-ply symmetric lami-
nates subject to temperature distribution varying linearly through the thickness and varying sinusoi-
dally with respect to the in-plane coordinates. Also, the laminate edges are simply supported and loaded
with biaxial stresses. The thickness of layers is taken as design variable which is presented as a function
of the number of layers. The effectiveness of the present optimization design and control approach is
examined.

2. Theoretical formulation

Consider a fiber reinforced rectangular laminate of constant thickness /4 occupying the space 0 <x < a;
0<y<b; —h/2<z<h/2. The laminate is composed of N anisotropic layers stacking in cross-ply lami-
nation scheme such that each layer possesses one plane of elastic symmetry parallel to its mid-plane. The
laminate is subjected to an temperature distribution varying linearly through the thickness and varying
arbitrarily with respect to the in plane coordinates x and y,
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T(x.7,2) = Tox.») + 5 Ti(x.). (1)

Further, the laminate edges are loaded with biaxial compressions P, and P, (see Fig. 1). A control force
q(x,y,t) distributed over the upper surface of the laminate is taken to damp the dynamic response with the
following initial disturbances:

w(x,,0) = 4"(x,y); w(x,»,0) = B"(x,y). (2)

In general, the material properties and the thermal expansion coefficients depend upon the temperature
level T (see Noor et al., 1994). But, for moderate increase in temperature, material properties may be
considered independent of temperature. Here, we confine the study to materials with temperature-inde-
pendent elastic properties. In addition, the assumed temperature does not exceed the buckling temperature.
Consequently, the present problem may be formulated within the framework of linear elasticity theory.

The present formulation is based on a consistent first-order shear deformation theory that includes
Ressiner—-Mindlin’s displacement assumptions and stresses consistent with the surface conditions on the top
and lower laminates surfaces. So, the rationales for the shear correction factors used in other first-order
theories are obviated. The displacement field is of the form:

up=u+zy, w=v+zd, uz=w, (3)

where (u;,u,,u3) are the displacements along x, y and z directions, respectively, (u,v, w) are the displace-
ments of a point on the mid-plane, and y and ¢ are the shear rotations due to bending. The infinitesimal
strains associated with the displacements (3) are given by:

& = s? +zp, a= eg tzd,, &=0, a=w,+¢, es=w,+y, &= 82 —|—zsé,
8(1) = Uy, 32 =V, 82 =0Uy+ Uy, 8} = lkw 8; = (l)v\n gé = d),x + lp,_w (4)
a comma denotes partial differentiation with respect to the subscript.
The governing equations of the laminate are given in the form (see Fares and Zenkour, 1999):

Nix+ Noy =it + 1Y, Noy+Noy = Lo+ I ¢, (5a)
QLx + Q2,_v + q = [;FW + (le,x + N()W,y),x + (N()W,x + NZW,y)vya (Sb)
M+ M, — 01 = Lit + LY, Mg, + My, — 0y = Lp+ ¢, (5¢)

where the superposed dot denotes differentiation with respect to time, the inertias /7 and the constitutive
equations are given by:

N Zk
1:=Z/ pW27Ndz,  (n=1,2,3),
k=1 *Zk-1

P,
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Fig. 1. Laminate subjected to in-plane compressive loadings and control force.
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where p®) is the material density of kth layer. The following definitions are used in the preceding equations:

(4;;, Bij, D;j) = Z/ ,} <h2’ h;144 )dz (i,j =1,2,6), (7a)

9w 422\’ .
Ay = ; WCU 1 7 dz (i,j=4,5), (7b)
— Zk—1
T 1,T - “ ol 2
o M)Zl/ LR 122 dz (1= 1,2,6), (70)
k Zk—1
where NT and MT are resultants and moments due to thermal loading, «; ) are the coefficients of thermal

expansion and C are the compliance elastic constants of the kth layer

3. Optimal design/control problem

The design and control optimization objectives of the present study are to maximize the thermal
buckling load and to minimize the vibrational response of the laminate (control objective) in a specified
time 0 < ¢ < 7 < oo with the minimum possible expenditure of force ¢(x, y, t). The total elastic energy of the
laminated plate is taken as a measure of the dynamic response which is a function of displacements, its
spatial derivatives and the velocity and is given by the following quadratic functional:

Ji(q, i) = ////S,UmLp (i + i5 +i3)]dzdydxds, (i=1,2,...,6), (8)

where o; are the stresses due to the thermomechanical loadings.

Now, the present control problem aims to determine the minimum control function ¢ € L?, where L?
denotes the set of all bounded square integrable functions on the region {0 <x<a,0<y <b,0 <t <1< 00},
which, minimize the total elastic energy J; of the composite laminated plate. This conditional problem may
be reduced to unconditional one by relating the total elastic energy J; with a penalty functional involving
the control force ¢(x,y,¢) which may be taken as a measure of the energy used in the controlling process,
then:

T b pa
J2:J1+z§1/// ¢ (x,y,1)dxdydr. 9)
0J0 JO

Note that, the new functional J; is still quadratic and, hence, differentiable and positive definite on the
domain of solution. This problem may be solved using Liapunov—Bellman theory (see Gabralyan, 1975) to
determine the optimal control force ¢°.
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The design procedure aims to maximize the critical buckling temperature 7 (%) and minimize the control
objective function J,(q°, #;). Then, we can unified the critical buckling temperature 7,(%;) and the control
objective J>(¢°, ;) in a single expression of the form:

J3(q" ) = 1a(q° i) + &/ Te(h), (10)

where ¢, and &, are positive constant weighting factors. Then the optimal design aims to determine the
optimal ply thickness /4, that minimize J;.

4. Solution procedure

The solution of this problem can be performed in two parts (see Boley and Weiner, 1960). The first one is
to determine the in-plane stresses Ny, N, and Ny and the in-plane displacements u and v. The second part
makes use of these results, to yield the displacements w, Y and ¢. For the present problem the solution will
be constructed for simply supported symmetric cross-ply laminates which has the feature that:

Alg = Ay =Ass=0, B;=0, (i,j=1,2,6), Dig=Dy=0, o=0.

In this case, we can easily obtain from system of equations (6) the following constitutive equations:

—8(1)- -All A12 0 N1 N]T

83 = Alz A22 0 Nz + Ng s (1 la)
_82_ L O 0 A66 N6 Ng
_8}_ _D“ D]z 0 M1 MlT

&; = D12 D22 0 M2 + Mg 9 (1 lb)
_Sé_ L 0 0 D66 M(, Mg
64, &5] = [Aaa 02, A5501]. (11c)

The first step of solution is performed using the governing equations (5a) and the constitutive equations
(11a). Egs. (5a) are satisfied identically by introducing the Airy stress function F(x,y),

N] :Eyyv NZ = Exxa N6 = _Exya (12)

using expressions (11a) with the in-plane strain compatibility equation, namely (see Turvey and Marshall,
1995).

%) %S 9%

o Zn_ 2% 13

0y? + ox2  oxdy (13)
we get for the stress function the following fourth-order partial differentiable equation:

ANF 4+ AnF s + (Ass + 2412)F oy + N+ Ny = 0. (14)

, Ly

The boundary conditions at the laminate edges will be taken to stipulate that the edges of the plate
remain straight, that is,

M(O,y) =0, U(xv O) =0, u(aay) = U, U()C, b) = Yo, (15)

where uy and v, are constants, consistently with the following conditions on the resultant forces on the ends:

b b a a
/Nl(O,y)dy:/ Ni(a, y)dy — bhP;, /Nz(x,O)dx:/ Na(x, b) dx — ahP>. (16)
0 0 0 0
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A solution of Eq. (14) that satisfies the conditions (16) may be obtained in the form:
1 1
F =3 Phy’ + 5P + aNj, + 6N,

with the help of solution (17), Eqs (11a) and (12), we can determine the in-plane forces N;, N,, Ny and the
displacements u and v.

The second step of the solution consists in the determination of the deflection w and of the critical
combination of the applied load and temperature levels. This is done with the aid of equations (5b), (5¢),
(11b) and (11c), with the following boundary conditions appropriate to simply supported edges:

Mi=w=¢=0, atx=0,aq,
My=w=y =0, aty=0,b.

(17)

Xx?

(18)

The exact solution of the above system of partial differential equations (5b) and (5¢) under the boundary
conditions (18), may be obtained by expressing the functions w, ¥ and ¢ and the closed-loop control
function ¢ in the form:

(W7 ‘//a ¢aq) = Z(VanXYa VXY, ¢mnXYy7 anXY)7 (19)

m,n

where W,.,., ¥un, Pun and Q,,, are unknown functions of time, and the functions X (x) and Y(y) have the
forms:

X(x) =sinp,x, u,=mn/a, Y(y)=sinly, i, =nn/b.

Substituting expressions (11b), (11¢) and (19) into Egs (5b) and (5¢), we obtain after some mathematical
manipulations, the following time system of equations:

[RI{K} + [LI{K} = {f}, (20)

where {K}, {K} and {f} are the displacements, the inertia and the force vectors, respectively. The matrices
[R] and [L] are given in Appendix A.

The present problem is solved under the assumption that the buckling and vibration of laminate occur at
different times during its service life (see Sloss et al., 1992). Then, the prebuckling response may be de-
termined by solving Eq. (20) with the non-linear terms involving thermal stresses omitted. While, the critical
buckling temperature rise 7, is found by solving the eigenvalue problem associated with equations (20) in
which the control force and inertia terms are dropped. In this case, system (20) is reduced to a homogeneous

linear algebraic system of three equations with three unknowns:

[RI{K} = {0} (1)

5. Optimal control force

The optimal control force ¢° and controlled deflection W corresponding to the prebuckling response
may be found from the system of equations (20), with the non-linear terms including the thermal stresses
and the in-plane inertia terms omitted. Then, an equation of the time-dependent functions #,,, and Q,,, may
be obtained in the form:

Won + O Wi = O /I,

mn mn

w? —;(e‘I’ + es P35 + eoW3) (22)
mn_egll*[l 3153 43 0rr3)-
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Also, using expressions (11) and (19) with (9), to get the cost functional J, in the form:
h=3 / (011, + 82 W, + 5300,) At =D Ty, (23)
mn 0 mon

where the quantities /;, ¢; and 9; are given in Appendix A. Since the system of equations (20) is separable,
hence the functional (23) depends only on the variables found in (m, n)th equations of the system. With the
aid of this condition, the problem is reduced to a problem of analytical design of controllers (see Gabra-
lyan, 1975), for every m, n =1,2,..., 00.

Now the optimal control problem is to find a control function ¢°(¢) that satisfies the conditions:

J(q°) <a(g), for all g(r) € L*([0, x0]),
that is:

minJ, = min g o = min J,,.
q q Omn€l?
m,n m,n

Hence, the minimization problem can be carried out independently for every modal equation. For such
problem, Liapunov-Bellman theory (see Gabralyan, 1975) is considered as an effective approach to solve it.
The necessary and sufficient conditions according to Liapunov—Bellman theory for minimizing the func-
tional (23) is:

{ aVWlﬂ ; aVH‘H‘I

mn '—nmn _mn =Y, 24
GW,,,,,W+6WW +J} 0 (24)

mn

min
Omn

provided that the Liapunov function V,,,

Vow = AW + 2BWpu Wy, + CW

mn?

(25)

is a positive definite, i.e. 4 > 0, C > 0 and AC > B2, where J,, is the integrand of (23). Using Eq. (24), we
can obtain the optimal control function in the form:

ng - 531* (BVV’”” + CV.Vm”)7 (26)
1

then, substituting Eqs (22), (23), (25) and (26) into the condition (24), and equating the coeflicients of w2,
w? and W,, W,, by zero, we get a system of equations. The general solution of this system under the

mn

condition that the Liapunov function is a positive definite is given by:

B = —11*2 [winég — \/5} ((,Uim53 —‘rl(sTlZ) s C= —11*\/ 53(234— 52)7 (27)
1

using expressions (26) and (27) into Eq. (22), it takes the form:
C 2 2

1.’i/mn + amnwmn + Qim Van = 07 On = 571> an = wmn + . 28
5%1;‘4 5312 (28)
The solution of Eq. (28) for which 22, > o,,, is given by:
. 1
VVrr(t)n = eizmn[/z[ mn COS(vmnl‘) + ymn SII](vm”t)L vﬁm = Qim o Zaf'ln’ (29)

where f3,,, and y,,, are unknown coefficients which may be obtained from the initial conditions (1) by ex-
panding it in double Fourier series, then:
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amnﬁmn + 2A:;H‘l

e i) = o [ vy (30)

mn

Vmn =

Insert the expressions (29) and (30) into Eqgs (23) and (26) we can obtain the total elastic energy and the
optimal control force.

6. Critical temperature and optimal design procedure

The critical combination of the applied edges loads and temperature levels, at which the buckling occurs,
may be determined from the requirement for a non-zero solution of system (21). Thus, we must set the
determinant |R| equal to zero, i.e.

Rl =0, or |Rl—A4U|-P|U=0, (31)

where the matrices [U], [U] and [R] are given in Appendix A, A is the non-dimensional temperature
parameter where A= o7y x 10>, T} = 10T;, and P is the non-dimensional edges load parameter,
P =100P,/E,, P, = P,. For a given value of P less than the pure critical edges loads, the lowest value of A
with respect to mode numbers (m, n) represents the critical value of temperature rise 7.. Also, for a given
value of A less than the pure critical temperature rise, the lowest value of P with respect to mode numbers
(m, n) represents the critical value of buckling load P, i.e.
T.=minA, P.=minP, mn=>1. (32)

The aim of the design procedure is to maximize the critical buckling temperature 7, using the layer
thickness #4; as a design variable. So, for the numerical purpose, we consider a general symmetric laminates
with a stacking sequence (0°/90°/0°...) having an odd number N of layers with thicknesses: (4,4,
h377.../...7h3,h2,h1), hl = h3 = h5 = "',hz = h4 = h6 (SCC, Flg 2)

In this case, we can formulate the layer thickness %, as a function of number of layers N by introducing a
thickness ratio 7 as follows:

L [mh/2s k= (13N)
k_{h[4—z1(N+1)]/(2N—2): k=(2,4,...,N—1).

h3=_h_1 3 V Middle surface

h

hy.o= hy -
hy.1=|hy M-1
hy=1h, N

Fig. 2. Geometry and cross section of the symmetrically laminated cross-ply laminate.

\
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Therefore, the optimum values 7, of the thickness ratio are determine from the following conditions:

T (Mope) = minJs(),  0<n<4/(1+N). (33)

7. Numerical results and discussion

In this section, numerical results for the controlled deflections w°, optimal force ¢° and the total elastic
energy J; are presented when all layers are orthotropic. The engineering constants are introduced instead of
the elastic constants from the relations:

1 1 Vi2 V3 Vi3 1
Ci=—, Cp=—, Cp=—-=, Cpn=—=" Ci=——, Cy=—
11 Ew1 9 22 E2 ) 12 E] ) 23 E2 ) 13 E] ) 44 G23 9
1 1
Css =—, C (34)

66 — )
Gi3 Gy

where E; are Young’s moduli; v; are Poisson’s ratios and G;; are shear moduli. The initial conditions (2) are
chosen in the form:

w(x,»,0) = 107X (x) Y (y), w(x,»,0)=0. (35)
In all calculations, unless otherwise stated, the following parameters are used,
E\JE; =25, Gn/E;=0.5 Gu/E;=02, viz=vyp, vip=025 Gi3=Gpy,

a/h=15 wju =3, & =01, &=1, ¢ =t/E/p, §=100g/E,
Uy =0y =V, N =3. (36)

The numerical results for deflections and force functions are given at the midpoint x = a/2, y = b/2.
Table 1 contains numerical results of the optimal thickness ratio 7,,, critical temperature level 70 for
laminates designed optimally over the thickness and critical temperature level 7, for laminates with equi-
thickness layers. In this table, the variations of 7, 7)) and T are studied with respect to the edges load P,
number of layers N and aspect ratio a/b. Note that, the optimal design procedure is more required for
square like laminates which have low resistance to thermal buckling, than the long laminates (a/b > 3).
Also when P = 0, the critical temperature level T° for optimally designed laminates is approximately four
times its corresponding value for non-optimal ones. Further, the ratio between T° and 7. increases grad-
ually with increasing the edges loads P.. The postbuckling edges loads with respect to the non-optimal
laminates (P, > 1 in case [ and P, > 2 in case II) become prebuckling loads with respect to the optimal ones.
So that, in all cases, the minimum values of 7 for optimal laminates are greater than the maximum values
of T, for non-optimal ones. Then, the present design procedure raises the critical combination level of the
applied load and temperature. Further, we observe that the edges load P has a weak effect on the optimal
thickness ratio 7,,, where 7, increases very slowly with increasing .. While, the effect of the aspect ratio
a/b on n,, is more considerable, particularly, for long laminates so that for laminates with 1 < a/b < 2, the
optimal thickness ratio 7, takes values between 0.92 and 0.86, while, for laminates with 2 < a/b < 3, the
ratio 1, takes values between 0.86 and 0 (P <2). Here, the optimal laminate corresponding to the case
Nope = 0 represents a single layer plate with fiber orientation angle 90°.

The improved critical values of temperature and edges load at which buckling occur for different values
of a/b and N are given in Table 2 for three buckling cases, where P, corresponds to a critical pure edges
loads (T = 0), T3 represents a critical pure thermal load (P = 0), and (P?,7?) corresponds to the general

c’ ¢
case in which both heat and edges loads are applied. These results may be seen to fit accurately the formula:
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Table 1

The critical temperature T;, for some cases of load P, and a/b o,/a; = 3, — means any temperature
P, N=3 N=5 N=7

Hopt TCO T: Nopt TCO T. Nopt Tco T.

Case I alb =1
0 0.92 6.102 1.525 0.66 5.694 1.395 0.5 6.003 1.365
0.5 0.93 5.387 0.649 0.66 4.993 0.514 0.5 5.305 0.482
1 0.93 4.673 - 0.66 4.292 - 0.5 4.606 -
2 0.94 3.248 - 0.66 2.891 - 0.5 3.209 -
3 0.96 1.829 - 0.66 1.489 - 0.5 1.812 -

Case II. alb =2

0 0.86 5.248 3.717 0.66 4.808 3.664 0.5 4.921 3.653
0.5 0.87 4.386 2.646 0.66 4.013 2.589 0.5 4.132 2.571
1 0.88 3.529 1.576 0.66 3.217 1.514 0.5 3.342 1.500
2 0.91 1.837 - 0.66 1.625 - 0.5 1.762 -
3 0.97 0.186 - 0.66 0.034 - 0.5 0.183 -

Case III. alb = 3

0 0 11.13 10.72 0 11.13 10.73 0 11.13 10.74
0.5 0 9.301 8.976 0 9.301 8.976 0 9.301 8.977
1 0 7.468 7.229 0 7.468 7.213 0 7.468 7.216
2 0.78 4.232 3.736 0.66 3.803 3.701 0 3.803 3.696
3 0.85 1.725 0.242 0.66 1.394 0.188 0.5 1.450 0.175
Table 2
The critical values of edges load P and temperature 7, for three cases of a/b
Load a/b=1 a/b=2 a/b=3
N=3 N=5 N=7 N=3 N=5 N=7 N=3 N=5 N=7
T=0,P)= 4.297 4.063 4.297 3.119 3.021 3.116 3.778 3.720 3.763
P=0,T"= 6.102 5.694 6.003 5.248 4.808 4.921 11.13 11.13 11.13
P=LT= 5.387 4.993 5.305 4.386 4.013 4.132 9.301 9.301 9.301
P=1,T"= 4.673 4.292 4.606 3.529 3.217 3.342 7.468 7.468 7.468
P=2,T= 3.248 2.891 3.209 1.837 1.625 1.762 4.232 3.803 3.803
P=3T= 1.829 1.489 1.812 0.186 0.034 0.183 1.725 1.394 1.394
P
o =1 (37)
7::0 PcO

for all aspect ratios, number of layers and all combinations of heat and edges loadings. Fig. 3 shows ob-
viously this fact which agrees with the results obtained in other studies (see Boley and Weiner, 1960; Turvey
and Marshall, 1995). For design process, Eq. (37) may be helpful in determination of buckling loads of
heated and loaded laminates. Fig. 4 shows the variation of 7, with respect to P. for optimal and non-
optimal laminates. This figure reveals that the design procedure raises significantly the level of the critical
temperature for all values of edges loads.

The effects of side-to-thickness ratio a/h and thermal expansions ratio «,/o; on the optimization process
are displayed in Fig. 5 which shows that the optimal design over the thickness is needed for all values of a /A
and o /0. Also, the optimal design is very active for moderately thick laminates with low values of o, /0,
while it is inactive for thin laminates with high values of a, /. This is may be explained by the fact that thin
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Fig. 3. Interaction of temperature level and applied stress for buckling of the laminates.
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Fig. 4. T.-curves plotted against P, (---) for # = 1, (—) for iy = 2h/N, a/b =3 and o,/ = 10.

laminate has a very low resistance to thermal buckling. In addition, the large difference between the thermal
expansion coefficients o) and «, in cross-ply laminates makes that the layers under the thermal load exhibit
various elastic behaviors causing decrease in the laminate resistance to thermal buckling.

Fig. 6 contains 7;.-curves plotted against the side-to-thickness ratio a/A for laminates with three, five and
seven layers. It is worth noting that the optimization over the thickness makes always to reduce the number
of layers. This is due to the fact that the laminate with few symmetric layers is more homogeneous and
resists the thermal buckling.

Fig. 7 includes curves of the controlled elastic energy J3(= 100J,/E,) plotted against the orthotropy
ratio E, /E, and temperature levels (10300 T). These curves indicate that beside the control force, the opti-
mization over the thickness considerably reduces the energy level of the laminate as compared to a non-
optimal one. In addition, the elastic energy still is reduced by virtue of the optimization with respect to the
design variable only without active control (see Fig. 8). Then the design optimization by itself can reduce
the dynamic response. Also, of course, as the temperature increase, the elastic energy significantly increase,
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Fig. 9. Curves of the elastic energy J; and the optimal control force ¢° plotted against #* for square laminate with a/h = 15, P = T = 0.

but, the optimal design procedure reduces and damps this behavior causing that the energy slowly increases
with the increase of the temperature level. The laminates exhibit similar behavior with increasing the or-
thotropy ratio. This is may due to the fact that the design optimization makes the laminate is more stiffer in
bending and has smaller deflections when compared to the non-optimal one (see Fig. 7(a)). The behavior of
the controlled energy J; and control force g°(= 100¢°/E,) with time #* is studied in Fig. 9. Note that the
optimization control not only reduces the elastic energy, but also, reduces the expenditure of control energy
and the time of damping process.

8. Conclusion

The optimal layer thickness and optimal closed loop control function are determined in a multiobjective
formulation of the design and control problem for a symmetric cross-ply laminate with simply supported
edges. The objectives of the present study are the maximization of the critical combination of the applied
edges loads and temperature levels and the minimization of the laminate dynamic response. The design and
control objectives are formulated based on a consistent first-order shear deformation theory without in-
troducing a shear correction factor. Numerical results are presented to show the advantages of the present
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optimization control procedure. The numerical study indicates that the present control optimization is very
active for moderately thick laminates and square like ones, particularly for laminates with low thermal
expansions ratio o, /o and high, orthotropy ratio E|/E,. For these laminates, the control optimization is
considerably reduces their dynamic response, but, it is less active in maximizing their thermal buckling. The
design procedure without any control force reduces considerably the dynamic response of the laminate so
that it limits the increase in laminate energy due to the increase in the temperature. Moreover, the present
optimization approach not only maximizes the thermal buckling and minimizes the dynamic response, but
also, it reduces the used control force and time of the damping process.

Appendix A

The coefficients e; and §; at T, = 0 are:

1 —
0= 2¢2 [12(e5 + e4>2/D66 +Iig(eo + 64)2/A44 +To(es + 60)2//455 + (e3Dilxs — 2esesDialy + & Dols) /D),
0

6y = ({1 + hol;e3/e;) /2,

eg = (Va®s — VsPy), e3=WsPy— W, Ps, ey =VsW, — Vyls,

Yy &3 W3 — 2y Y &3 Wi
R=|V, & W, , [Rl=|%s &4 Wi,

Vs s Ws Vs @5 W

Yy &3 vy ¥, @3 7y
=% & o, [O=|% & o,

¥Ys &5 0 s @5 0

Wy =Is/Ass + I/ Ass, V5 =15/Ass, @3 =1Is/Au,

Wy = 10D/ Ass, 7, = Lo(Diamy — Daom}), W4 = —I12Dy + I1gD/Ass — I14D/Des,

@, = L4(D1» — D/Dgs), ys=Lis(Diom{ —Dyymy), Ws=114D/Ass, Ws=1I1sD/Au,

y = —Imufniﬁ(alnfﬂj + azngufn), 5 =10"hE\(Is +1I;), D = (D Dy — sz),

®s = 1,4D/Aus — 1sD/Dgs — Db, Ly =617, L;=0,(i,j=4,5), {f}=1[q.747s

where

1 N Zk
noml) = —— / o, 0,2k /120), dz, (i,j =1,2,6),
( i 1) hO(] X 102 ; Zkil( )T / )k ( J )
a pb
([1’157]&[7718) = /0/0 (XY,XxxY?H}??XXXY:}B”XX}D’)XYdXdyv

a rb
(1107[127114) = // (XvaXxxvaXxY,yy)XdeXdyv
0Jo
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) >

a prb
(116, 118, 12, I3) :/0/0 (XY X XY XiKi’Xixx_i)dXdy’

12:13:14:19:111 :113:115:117:119:120:121 =0.
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